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COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES TO THE GREAT LAKES

Steven Buchbergerl

ABSTRACT. The cross correlation function (CCF) and autocorrelation
function (ACF) for Great Lakes annual net basin supplies are derived under
the assumptions that annual lake outflows and water levels are autoregres-
sive lag-l processes, and that each lake behaves as a linear reservoir.
Except for the pairing between Lakes Superior and Michigan-Huron, there
is reasonable agreement between the sample and predicted CCFs,  especially
among net basin supplies to the small lower basin lakes. The derived ACFs
reduce to an expression identical in form to the ACF for an Auto Regressive
Moving Average (ARMA)( 1 ,l) process at all the Great Lakes except Lake
Michigan-Huron. At the upper basin lakes, sample and predicted ACFs
drop to zero rapidly. At the lower basin lakes, the ACFs exhibit a much
more gradual decay suggesting the presence of long-term persistence.
Prominent tails in the ACFs of the annual net basin supplies have been
attributed to historical shifts in the precipitation regime at the lower basin
lakes. Results from this study show that the residual method currently used
to estimate net basin supplies can also induce a similar artificial long tail in
the ACE This observation has important ramifications in efforts to simu-
late Great Lakes water levels, since simulation results are quite sensitive to
the covariance structure of the annual net basin supplies.

1. INTRODUCTION

Water moving through the Great Lakes is classified according to two primary pathways: (1) inter-
basin flows, or (2) net basin supplies. Inter-basin flows represent water conveyed through the natural
connecting channels and water imported or exported through man-made diversions. Net basin supply is a
derived quantity used to account for all other processes by which water enters or leaves a lake. Included
here are water gains due to over-lake precipitation and basin runoff and water losses resulting from lake
evaporation and groundwater outflow.

Net basin supplies are useful in short-term water level forecasting, long-term simulation of lake levels
and other investigations of Great Lakes hydrology (Croley and Hartmann, 1987). Several multivariate
autoregressive moving average (ARMA)  time series models have been developed to simulate and forecast
monthly net basin supplies (Yevjevich, 1975; Loucks,  1989; Buchberger, 1992; Rassam et al., 1992).
These ARMA  models can be classified as either direct or indirect. The direct approach considers only
monthly net basin supplies and, as a consequence, fails to capture the year-to-year correlations among
annual net basin supplies. In contrast, the indirect approach first generates annual net basin supplies and
then disaggregates these values into monthly supplies. The disaggregation scheme is able to reproduce
both the annual and monthly correlations among the net basin supplies.

GLERL Contribution No. 899
Dept. of Civil and Environmental Engineering, Univ. of Cincinnati, Cincinnati, OH 45221-007 1

1



Engineered outlet works have regulated the release from Lake Superior since 1921 and from Lake
Ontario since 1958. Although discharges from the other three Great Lakes are not directly regulated by
man-made control structures, outflows from the middle lakes have been influenced over time by dredging
and other modifications to the connecting channels (Quinn, 1985).

2.2 Net Basin Supplies

Let Ni(t)  denote annual net basin supply to lake i during year t. By definition, Ni(t) is the sum of
annual water gains due to overlake  precipitation Pi(t) and tributary runoff Ri(t) minus annual water losses
to lake evaporation Ei(t) and seepage Gi(t) or

Ni(t) = I + R,(t) - E,(t) - Gi(t). (1)

Owing to the large surface and drainage areas of the Great Lakes, the individual components in equation
(1) are difficult to measure. In practice, Ni(t) is usually estimated as the residual term in the lake water
balance equation,

N,(t)= Qi(t)-Qi~l(t)+~i(t)-Si(t-l)~Di(t) (2)

where Q,,(t) and Q,(t) are, respectively, annual inflows and outflows through the connecting channels at
lake i during year t, Si(t)-S&t-l)  is the corresponding annual change in lake water storage during year t
expressed as a rate, and Di(t) is the annual diversion accounting for water imports and exports at the lake.

The residual approach for estimating Ni(t) is expedient, but it has some shortcomings. The magni-
tudes of the individual Qi and Si terms on the right hand side of (2) are often significantly greater than the
resulting N, on the left hand side. Hence, the residual method is susceptible to significant computational
errors introduced by deriving the net basin supply as the difference between large uncertain quantities.
For example, Quinn and Guerra (1986) have shown that a 5% error in the estimated flows of the Detroit
or Niagara Rivers leads to a 34% error in the computed net basin supply for Lake Erie. Croley (1987)
shows that changes in lake storage are especially difficult to quantify during the fall and winter months
when frequent storm activity perturbs the lake-wide average water surface. In addition, the residual
approach ignores thermal volumetric changes, an omission which can lead to significant errors in the
estimated net basin supply (Croley and Lee, 1993). Loucks  (1989) provides a good discussion on the
advantages and disadvantages of the two basic methods, given in equations (1) and (2), for computing net
basin supplies.

2.3 Historical Data

Water levels and outflows of the Great Lakes represent one of the longest and most complete hydro-
logic records in North America. For this study, annual outflow rates in cubic meters per second and
January 1 lake elevations in meters for the period 1900-1989  were obtained from the Great Lakes Envi-
ronmental Research Laboratory (Hunter and Croley, 1991). Values of coordinated monthly net basin
supplies computed with the residual method (equation 2) for the period 1900-1989  were provided by the
U.S. Army Corps of Engineers. These coordinated monthly net basin supplies are identical to those used
in the recent levels reference study prepared for the International Joint Commission (Working Committee
3,1993).  The term “coordinated” implies that these net basin supply data have been published under the
auspices of the bi-national coordinating committee on Great Lakes basic hydraulic and hydrologic data.
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Table 2a.--Properties of Great Lakes Annual Storage Rates, 1900-  1989.

Table 2b.--Lag-Zero Cross-Covariances and Cross-Correlations Among
Great Lakes Annual Storage Rates, 1900-1989.

Lake Superior Michuron St. Clair Erie Ontario
(1) Superior 135,640 237.124 3,109 41,781 16,119

(1.000) (0.482) (0.605) (0.425) (0.268)
(2) Michigan-Huron 1.785.440 16,319 310,958 147.685

(1 .ooo) (0.856) (0.873) (0.676)
(3) St. Clair 186.2 3,436 1,537

(1.ooo) (0.900) (0.674)
(4) Erie 71,106 31,835

(1.000) (0.730)
(5) Ontario 26,758

Notes: (1) Table 2b is symmetric.
(2) Year starts on January 1.
(3) Crosscovariance units are (cubic meters per second)2.
(4) Cross-correlations are given in parenthesis.
(5) St. Clair data from period 1910 to 1989.

reasonable for the Great Lakes where surface areas are large and lake level fluctuations are small. The
surface area, conversion factor and elevation datum for each lake are summarized in Table 4. In what
follows, annual water levels and annual storage rates are used interchangeably since they are related to
each other by a lake specific conversion factor.

The mean storage rates for each lake given in Table 2a depend on the datum selected. This has no
bearing on the covariances listed in Table 2b, since the covariances of the storage rates are independent of
the datum selected. Because storage rates depend on lake size, the covariances of the annual storage rates
given in Table 2b take their maximum values at Michigan-Huron (the largest lake) and their minimum
values at St. Clair (the smallest lake). To get the statistics in Tables 3a and 3b, coordinated monthly net
basin supplies were converted to an equivalent annual net basin supply also expressed as cubic meters per
second.

The outflows and storage rates at the Great Lakes have high temporal and spatial correlations. As
shown in Tables la and 2a, the lag-l autocorrelations in the annual outflows and the storage rates range
from 0.5 1 to 0.85. Similarly, the lag-0 cross correlations among annual outflows given in Table lb range
from about 0.33 (Superior and the lower lakes) to values exceeding 0.98 (Michigan-Huron and St. Clair;
Erie and Ontario). The lag-0 cross correlations among annual storage rates shown in Table 2b range from
about 0.27 (Superior and Ontario) to 0.90 (St. Clair and Erie). Without exception, the lowest observed
values of the temporal and spatial correlations occur at the top of the chain with Lake Superior (see row 1
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in Tables lb and 2b). In part, this may reflect the effects of regulation plans that have controlled outflows
and water levels at Lake Superior since 1921. Although not quite as dramatic as the lake outflows and
storage rates, annual net basin supplies have lag-l autocorrelations given in Table 3a that range from 0.16
(Superior) to 0.50 (St. Clair) and lag-0 cross correlations given in Table 3b ranging from 0.25 (Superior
and St. Clair) to 0.66 (Erie and Ontario).

3.0 MODELING STRATEGY

3.1 ARMA  Models

How does the presence of significant temporal and spatial correlations among the lake outflows and
water levels affect the covariance structure of annual net basin supplies that are computed with the
residual method? To examine this issue, autocorrelation and cross correlation structures for the annual
outflows and lake levels must be specified. Exploratory data analyses showed that three ARMA  type
models-AR(l), AR(2),  and ARMA( 1,l )-provide adequate descriptions of the autocorrelation in these
annual series. As summarized in Table 5, no single model consistently emerged as the top candidate. For
annual lake outflows, the ARMA( 1,l) model tended to give the best fit on the upper lakes while the AR( 1)
model prevailed on the lower lakes. For annual lake levels, the AR( 1) model tended to work best, except
on Lake St. Clair.

In the presence of several competing candidates, here we adopt the AR( 1) option as the simplest
model which offers the most universal application to annual outflows and water levels throughout the
entire Great Lakes system. There is some precedent here. An AR( 1) model has been suggested by Potter
(1992) for annual water levels in Lake Erie and by Yevjevich (1972) for annual outflows from Lake

Ontario. Letting Q*(r) = Q(t) - pupi  and Sit(t)  = Sj(t) -psi where /.+,, is the mean annual outflow

from lake i, and p, is mean annual storage rate in lake i, then the AR(l)  models for lake outflows and
storage rates are written

e,‘(t) = cqei’(l  - 1) + a,(t)

$(r) = /$s,:(t - 1) + b,(t)

(34

(3b)

Table X--Ranking of ARMA Models Fitted to Great Lakes
Annual Outflows and Water Levels, 1900-1989.

Data Superior Michuron St. Clair Erie Ontario
Series
Annual ARMA ARMA ARMNl,l) AN11 AR(l)

Lake AR(l) AR(2) W2) JQ-WLI) -(Ll)
outflows AR(2) AR(I) AR(I) AR(2) AR(2)
Annual AR(l) AR(l) AR(2) AR(l) AR(l)

AR(2) Aw-9 ARMA AR0 AR(2)
Levels ARMA(l,l) ARMA(l,l) AR(l) ARMA(1.1) ARMA(l,l)

Notes: (1) Model ranking from top (best) to bottom (worst) is based on Akaike Information
Criteria (Alcaike,  1974).

7



1

I -  0 . 5

B
#

FL2

0

8 - 0 . 5

-1

-.i . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,,.,,........  t . . . . . . . . . . . . . . i.-

-.i . . . . . . . . . . . i . j . . . . . . . . . . . i .._..........  L .,...........  i . . . . . i._

0 2 4 6 6 10 12
LAG

l -

% 0.5-

w
#

i

0;

e - 0 . 5 -

T

.i,

.i.
L

1

I -  0 . 5
E

i
k

0

:
CJ - 0 . 5

-1

1

0 . 5

0

-0.5

-1

1

0 . 5

0

- 0 . 5

- 1

-.; .,.,,........  j ..__  j .,..,........  < . . . . . . . . . . . . . ! .,_,,_......,;  . j._. . .

-.; . .._.........: . . ..____...... . . . . . . . . . . (.,...........; . . . . . . . . . . . . . . I._
0 2 4 6 8 1 0 1 2 0 2 4 6 8 10 12

LAG LAG

~~~~

e.

-.i ,.,..........)  . . .._._......; . . . . . . . . . . . i . . + . . f . . . . . . . . . . j._

-.i ____,_...,,.,  i ..__._  i __._..,,.,,..  i .._______._..  z. . . . . . . . . . . . . . . i.-

0 2 4 6 8 18 12
LAG

-.i  . . . . . . . . . . . . . . . i . . . . . . . . . . . . . j. . . . + . . . . . . . . . . . . . . ;.-

-.i . . . . i i . . . . . . . . . . . 1.............  .i . . . . . . . . . . i . I._

0 2 4- 6 8 10 12
LAG

(A) Lake Superior
(B) Lake Michigan-Huron
(C) Lake St. Clair
(D) Lake Erie
(E) Lake Ontario

Figure 2.--Sample and AR( 1) ACFs for Great Lakes annual connecting channel flows.
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An ideal linear reservoir has storage proportional to outflow, S(t)=hQ(t)  where h is the storage
coefficient (Klemes, 1974a). Here we adopt a discretized form of the linear reservoir model to better
reflect the Great Lakes data used in this study

Si(t)=~i[~i(t)+(l-w)Qi(t+')]+ei(') (4)

In equation (4) 0 I w I 1 is a factor used to express lake storage as a weighted average of annual lake
outflows, and e,(t) is an error term with zero mean representing the difference between observed storage
levels and the predicted linear reservoir response. If o=O,  then equation (4) gives a “controlled” linear
reservoir in the sense that the immediately past storage level governs the current output (Klemes, 1974a).
If 0=1, equation (4) gives a “spontaneous” linear reservoir where the current outflow depends on the
current storage level and vice versa. Here we take 0=0.50  to give equal emphasis to the annual outflows
that occur during the period immediately preceding and following the January 1 lake level, as shown in
Figure 4. With o specified, the storage coefftcient  h is found from a linear regression of S(t) on l/
2[Q(t)+Q(t+l)]. Estimates of h and the corresponding correlation coefficient  ro,s are given in Table 6.
Plots of the regression lines, given in Figure 5, show that the linear reservoir model works particularly
well at the middle lakes where outflows are not regulated.

3.3 Covariance Functions

From equation (2), the lag-k covariance between net basin supplies for lakes i and j can be written

Cov[N,(t),N,(r+k)]=  Cov[{AQi(t)+ASi(r)},{AQj(~+k)+ASj(z+k)}]

where AR.(t) = Q,(t) - Q-i(t) and AS(t) = S(t) - Si(t - 1). Letting

yN,,N,  (k) = Cov[N,(t),N,(t+k)],  fien as shown in the Appendix, equation (5) leads to

Casel: k=l,2,...

yy,N,  (k) = $(I + nji,i - ~jj,j)Y~i.~j  - af(’ - nj,j)yQi-~tQj

-aiwl(l + nj-l,i>YQi,Qj-,  + a~-lY~i+Qj-,  - p,“-‘(l - p,)’ ysi*sj

(5)

(6a)

S(t-1) WI S(t+ 1) Figure 4.--Discrete time
representation of Great Lakes
annual connecting channel

Q(t) Q(t+  1) flows and January 1 storage
/ levels.

t-l t t + l
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Case2: k=O

Y,,,(O)=
1
l+(ai-a’)(ai-a,)  YQ,Q, -

2 1 [1’ I l+‘(ai-(W,_,)  3/Q,Q,-
2 1 I. ,I

(6b)

- ai-,) 1yp,,  ,Qj  + YQ,-,  ,QjmI  + (2 - pi - pj)ysi’sj

Case 3: k = -l,-2,...

yN. N.(k) = &‘(l + n. .1’ I I ‘J - nii,i  )YQ,.  ,Qj  - a!’ Cl- nii.i  h’a ,@-I

-~~g(l+  ~i-1 j)y~_  Q, + a!k’ y -B!~‘-1(1-p.)2y
1’ I 1-1 Q,-,.Q,-I  1 I si ,sj  *

w

To simplify notation, lag-0 cross-covariance terms have been abbreviated so that Y,,~ implies Y,,~(O).
The zij terms appearing in equations (6a) and (6~)  are defmed by

xii =*c 1s ;3i.1 (7)

Comparing results for the positive and negative lags shows

YNi,Nj t-w = YN,,N, (4

which is consistent with known cross covariance properties (Box and Jenkins, 1976).

3.4 Cross Correlation Function

The cross correlation function (CCF) between annual net basin supplies for lakes i and j is defined by

k = O,+l,ti,... 03)

where crNi is the standard deviation of the annual net basin supply for lake i. From the result in (6b), the

lag-0 covariance yNi,Ni  (0) = oNi is given by

Using expressions (6) and (9) in equation (8) gives the CCF for the annual net basin supplies of any two
lakes. Observed and predicted CCFs for annual lags ranging from -10 to +lO at each pair of lakes are
presented in Figure 6.
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Figure 7.--Sample and predicted ACFs for Great Lakes annual net basin supplies.
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Table 7.--Sum of Absolute Differences Between Observed and Predicted
Cross Correlations for Great Lakes Annual Net Basin Supplies, 1900- 1989.

Notes: (1) Table 7 is symmetric.
(2) First entry in parenthesis is rank excluding diagonal element (ACF).
(3) Second entry in parenthesis is rank including diagonal element (ACF).

4.2 Autocorrelation Function

Observed and predicted ACFs for the annual net basin supplies are shown in Figure 7. In contrast to
the CCFs,  the ACFs show better agreement at the large upper basin lakes than at small lower basin lakes.
What is most interesting though is the behavior of both the sample and predicted ACFs. It is clear that the
correlation structure of the annual net basin supplies differs between the upper basin lakes and the lower
basin lakes.

At Lakes Superior and Michigan-Huron, the ACF quickly dies out with increasing lags. No ACF
values for lags beyond k=O are significant at the 95% level. On Lakes St. Clair, Erie and Ontario, both the
sample and the predicted ACFs show a much more gradual decay. At St. Clair, the sample ACF is signifi-
cant at 4 of the first 5 lags beyond k=O. The ACFs  for Lakes Erie and Ontario each have significant
sample estimates at 2 of the first 5 lags. The match between sample and predicted ACFs is not particu-
larly good at Lakes St. Clair and Erie. This is born out in Table 7 where the absolute difference criterion
given by equation (16) takes its maximum values at F(3,3)=4.102  and F(4,4)=2.910.  Nonetheless, the
predicted ACFs correctly identify the lakes where the tails of the sample ACFs  are most prominent.

As shown in equation (13), the ACF of the annual net basin supplies at all of the Great Lakes except
Michigan-Huron can be estimated as the difference between two terms that follow a geometric decay for
lklll.  When applied on an individual lake basis, using parameter values from Table 6, equation (13) leads
to the following approximations for the ACF of annual net basin supplies for k=i-l&2,...:

Superior,al  = j?, : PN, (k) = (A, - Bl )(a, >lk’ = (0.28)(0.52)‘4 WV
Michigan - Huron : pN, (k) from equation (10) only (17b)

St.Clair,  B3 = 0 : PN, (k) = (A3W3dk’ = (0.97)(0.83)“’ (17c)

Erie,a, = &, B4 =O: pN,(k)=(A4 - Bq)(a4)'k' =(0.59)(0.82)"' (17d)

Ontario, fi5 = 0 : pN, (4 = (A,)(& = (0.65)(0.83)“’ We)
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meters per year at Lake Superior up to 0.31 meters per year at Lake St. Clair. The relative variation in d
is small, however, compared to the range in AL which starts at 1,110 km2  with Lake St. Clair and exceed:
117,000 km2 at La& Michigan-Huron. Hence, lake size is the dominant factor in determining the magni-
tude of ofi in the Great Lakes.
(15) can be written

For the net connecting channel flows, note that the numerator in equation

2

OAQi - 2Pi,i-IoQi  OQi-1 (21)

where pi i-, is the correlation between Qi and Q,.,. The entries in Table lb show that p.. decreases as lake
size increases. For example, at Lake St. Clair, p&I.995 which indicates the annual &klows  and outflows
are nearly perfectly correlated at the smallest lake in the chain. By virtue of equation (21), high positive
correlation between inflows and outflows strongly limits the variability in their difference. In contrast, at
Lake Michigan-Huron, p&.403 revealing a weaker association between annual inflows and outflows.
Here the covariance term has little influence in limiting the variability of the difference between the
inflows and outflows at the largest lake. From a physical point of view, this behavior seems reasonable.
Small lakes have short detention times and little capacity to moderate input; hence, inflow soon becomes
outflow, and the correlation between the two will tend to be high. The converse holds for large lakes.

The observation that both o*o and oti increase with lake size in the Great Lakes system probably
applies to other lakes in series, though it would not be difficult to devise exceptions to this behavior.
From the standpoint of the implicit ABMA(  1,l) moving average parameter given by (19), it is the vari-
ance ratio oRz= a~oz/~sz  which is important in the Great Lakes. Since otiz grows faster than does oaz, the
variance ratio <T,~ actually decreases with increasing lake size as shown in Table 6. Evidently, a unit
increase in lake surface area contributes incrementally more to the variability in lake storage than to the
variability in the net connecting channel flow at the Great Lakes. These findings can now be used to help
interpret the ACFs given in Figure 7.

In the upper basin, both the sample and predicted ACFs of the annual net basin supplies decay
quickly. At Lake Superior, the magnitude of the autoregressive parameter (a,=O.530)  is too small to
sustain the tail in the ACF needed for long-term persistence. This is evident in Figure 7-A where both the
sample and the predicted ACFs die out after 2 lags. At Lake Michigan-Huron, the autoregressive param-
eter (a,=O.827)  is suffkiently high to generate long-term persistence with an ARMA(l,l) model. How-
ever, the derived ACF does not reduce to au ARMA( 1,l)  form since a,#a,. Here too, the sample ACF
dies out after only 1 lag as shown in Figure 7-B. Maximum likelihood estimates of the ARMA(  1,l)
parameters oML  and z,, for the upper basin lakes, listed in Table 6, are not significantly different than
zero.

At Lake St. Clair, the variance ratio ( crRs2  = 30.0) takes its maximum value. Using equations (19)
and (2Ob), this leads to a very low value for the implicit moving average parameter (8,=0.076).  In
conjunction with the high autoregressive parameter (01,=0.832), this produces an ACF with very promi-
nent tails as seen in Figure 7-C. Even though the predicted ACF overestimates the sample ACF, it none-
theless correctly identifies St. Clair as the lake where the ACF signature of the annual net basin supplies is
most pronounced.

Lakes Erie and Ontario in the lower basin also exhibit prominent positive tails in their sample and
predicted ACFs as shown in Figures 7-D and 7-E. Although the predicted ACFs  tend to overestimate the
observed ACFs,  both exhibit a similar pattern, especially at Lake Ontario. Values of the autoregressive

parameters (a,=O.841;  c+.826),  variance ratios ( gq2 = 1.706; o&2 = 1.836),  and resulting implicit
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here that the residual method for estimating net basin supplies leads to an autocotrelation structure in
the resulting annual. time series that is identical to an ARMA( 1,l)  model. Provided that the autore-
gressive parameter 1s not too small, the derived ACFs  exhibit long tails. The strength of this appar-
ent persistence is governed by a dimensionless variance ratio oR2 which increases as lake size
decreases. This suggests that the covariance properties of annual net basin supplies estimated from
the residual method have an implicit dependence on lake scale.

Certainly, models are available (Salas et al., 1985) that can preserve the annual covariance
structure observed in the historical net basin supplies. A key issue in selecting and calibrating these
models is to identify the appropriate degree of annual correlation that should be maintained. The
challenge introduced here is to reconcile apparent persistence that arises as an artifact of the compu-
tational method with genuine persistence that accompanies the behavior of nonstationary physical
processes. This has important implications for future modeling efforts since recent studies have
shown that simulated Great Lakes water levels are quite sensitive to the presence of autocotrelation
in the annual net basin supplies, especially at the lower basin lakes (Rassam  et al., 1992). It is
reasonable to speculate that the observed high lag autocorrelations and cross correlations in the
historical annual net basin supplies at the lower lakes likely reflect the combined effects of artificial
and genuine persistence. The only sure way to isolate these potential sources is to estimate net basin
supplies directly using equation (1) with accurate observations of water fluxes at many stations
providing good spatial coverage for long periods of time.

6.0 CONCLUSIONS

This study examines how temporal and spatial correlations among the connecting channel flows
and the lake water levels affect the covariance structure of the Great Lakes annual net basin supplies
when these supplies are computed as the residual term in a lake water balance. Results demonstrate
that the residual method introduces an autocovariance structure identical in form to the autocovari-
ante of an ARMA(l,l)  model at all lakes except Michigan-Huron. The autoregressive parameter $
of the ARMA( 1,l)  model for net basin supplies is equal to the autoregressive parameter of an AR( 1)
model for annual outflows from the lake. The implicit moving average parameter 8 depends on a
dimensionless term oR2 defined in equation (15) as the ratio of the variance of the annual net con-
necting channel flow to the variance of the annual change in lake storage. For certain values of these
parameters (0<8<~1  and o close to l), the ARMA(l,l)  model leads to prominent tails in the ACF
and, hence, mimics the effect of long-term persistence in the annual net basin supplies.

Except for the pairing between Lakes Superior and Michigan-Huron, both of which are moder-
ated by Plan 77A, there is reasonable agreement between the sample and predicted CCFs.  The CCF
match is especially good among the net basin supplies to the small lower basin lakes. At the large
upper basin lakes, both the sample and predicted ACFs drop to zero rapidly. At Lake Superior the
autoregressive parameter is too small to sustain high lag autocorrelations. At Lake Michigan-Huron,
the ACF does not reduce to an ARMA( 1,l)  form. Sample and predicted ACFs  at the lower basin
lakes exhibit a much more gradual decay. Here the autoregressive parameters are large enough to
sustain a long tail ACF. The prominence of the tail in the predicted ACF depends on the variance
ratio oR2 which is found to increase as lake size decreases. As a consequence, the residual method
leads to a covariance structure in the resulting net basin supplies that depends implicitly on lake
scale.
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